News

Controlling Bias in Artificial Intelligence

New website and resources from our <A+> Advisory Board members Elisa Celis and Nisheeth Vishnoi of Yale University. With special work on Debiasing Data, Ranking, Classification, Online Advertising, Data Summarization, Polarization and Multiwinner Voting

The use of standard datasets, models, and algorithms often incorporates and exacerbates social biases in systems that use machine learning and artificial intelligence. Context-aware design and implementation of automated decision making algorithms is, therefore, an important and necessary venture. Our group aims to mitigate social biases in AI, with a focus on providing feasible debiased alternatives to currently-used models.

Here is the new controlling bias in artificial intelligence website

https://drive.google.com/file/d/15BkhF5y0DLoN5oml5tv6bdAgpbhTsocN/preview

Data Summarization Prototype for gender-balanced image search.

https://drive.google.com/file/d/1fR9a-skE_ytkQ9UZALjQrq6NAS_Lj97f/preview

Polarization Prototype for politically-balanced and personalized newsfeeds. Video.

https://drive.google.com/file/d/1vtTKzw67C6fruaaDLsq8ir8bmFhPGVpa/preview

Multiwinner Voting Elect a committee that is balanced across different attribute types. Deployed in Swiss elections. Video.https://drive.google.com/file/d/1sXrI9Izw_1helXYnoe9jAiGXVv1-ahBD/preview

Ranking Prototype for gender-balanced rankings with applications to search engines, newsfeeds, and recommendation systems.

https://drive.google.com/file/d/1lAQIVVmW2HIaXWo5-ymIjtd2PlAuVZhN/preview

Classification Python notebook for a meta fair classification algorithm, works for various fairness metrics. Deployed in IBM AIF 360.

https://drive.google.com/file/d/1NiE7uyw3zUqaNYUjx8Pzz2anutCbRjEf/preview

Online Advertising Prototype for gender-balanced and auction-based online advertising platform.

https://drive.google.com/file/d/1d7BtV8hTKFm0P6uIWE4zlN18AS_UqBAT/preview

Debiasing Data Python notebook for learning and evaluating unbiased maximum-entropy distributions from biased datasets.